
34 TUGboat, Volume 5, No. 1

GRAY FONTS FOR METAFONT PROOFS

Gray fonts for METAFONT proofs. (Preliminary draft: May 2, 1984)

The G F t o D V I program converts a G F file into a D V I file that, when printed, gives a hardcopy proof of

the characters. The proof diagrams can be regarded as an array of rectangles, where each rectangle is either

blank or filled with a special symbol that we shall call x. A blank rectangle represents a white pixel, while

x represents a black pixel. Additional labels and reference lines are often superimposed on this array of

rectangles; hence it is usually best to choose a symbol x that has a somewhat gray appearance, although

any symbol can actually be used.

In order to construct such proofs, G F t o D V I needs to work with a special type of font known as a "gray

font"; it's possible to obtain a wide variety of different sorts of proofs by using different sorts of gray fonts.

The purpose of this memo is to explain exactly what gray fonts are supposed to contain.

The simplest gray font contains only two characters, namely x and a another symbol that is used for

dots that identify key points. If proofs with relatively large pixels are desired, a two-character gray font is

all that's needed. However, if the pixel size is to be relatively small, practical considerations make a two-

character font too inefficient, since it requires the typesetting of tens of thousands of tiny little characters;

printing device drivers rarely work very well when they are presented with data that is so different from

ordinary text. Therefore a gray font with small pixels usually has a number of characters that replicate x in

such a way that comparatively few characters actually need to be typeset.

Since many printing devices are not able to cope with arbitrarily large or complex characters, it is not

possible for a single gray font to work well on all machines. In fact, x must have a width that is an even

multiple of the printing device's unit of horizontal position, since rounding the positions of grey characters

would otherwise produce unsightly streaks on proof output. Thus, there is no way to make the gray font

as device independent as the rest of the system, in the sense that we would expect approximately identical

output on machines with different resolution. Fortunately, proof sheets are rarely considered to be final

documents; hence G F t o D V I is set up to provide results that adapt suitably to local conditions.

This understood, we can now take a look at what G F t o D V I expects to see in a gray font. The character x

always appears in position 1. It must have positive height h and positive width w; its depth and italic

correction are ignored.

Positions 2-120 of a gray font are reserved for special combinations of x's and blanks, stacked on top

of each other. None of these character codes need be present in the font; but if they are, the slots should

be occupied by characters of width w that have certain configurations of x's and blanks, prescribed for each

character position. For example, position 3 of the font should either contain no character at all, or it should

contain a character consisting of two x's one above the other; one of these x's should appear immediately

above the baseline, and the other should appear immediately below.

It will be convenient to use a horizontal notation like 'XOXXO' to stand for a vertical stack of x's and

blanks. The convention will be that the stack is built from bottom to top, and the topmost rectangle should

sit on the baseline. Thus, 'XOXXO' stands actually for a character of depth 4h that looks like this:

- baseline
x

blank

x

We use a horizontal notation instead of a vertical one because column vectors take too much space, and

because the horizontal notation corresponds to binary numbers in a convenient way.

Positions 1-63 of a gray font are reserved for the patterns X, XO, XX, XOO, XOX, . . . , XXXXXX, just as

in the normal binary notation of the numbers 1-63. Positions 64-70 are reserved for the special patterns

X000000, XX00000, . . . , XXXXXXO, XXXXXXX of length seven; positions 71-78 are, similarly, reserved for the

length-eight patterns XOOOOOOO through XXXXXXXX. The length-nine patterns XOOOOOOOO through XXXXXXXXX

are assigned to positions 79-87, the length-ten patterns to positions 88-97, the length-eleven patterns to

positions 98-108, and the length-twelve patterns to positions 109-120.

Position 0 of a gray font is reserved for the "dot" character, which should have positive height h' and

positive width w'. When G F t o D V I wants to put a dot at some place (x, y) on the figure, it positions the

dot character so that its reference point is at (x, y). The dot will be considered to occupy a rectangle

TUGboat, Volume 5, No. 1 35

(x + 6, y + E) for -w' 5 6 5 w' and -h' 5 E 5 h'; the rectangular box for a label will butt up against the

rectangle enclosing the dot.

All other character positions of a gray font (namely, positions 121-255) are unreserved, in the sense

that they have no predefined meaning. But GFtoDVI may access them via the "character list" feature of TFM

files, starting with any of the characters in positions 1-120. In such a case each succeeding character in a

list should be equivalent to two of its predecessors, horizontally adjacent to each other. For example, in a

character list like

53, 121, 122, 123

character 121 will stand for two 53's' character 122 for two 121's (i.e., four 53's), and character 123 for two

122's (i.e., eight 53's). Since position 53 contains the pattern XXOXOX, character 123 in this example would

have height h, depth 5h, and width 8w, and it would stand for the pattern

xxxxxxxx

xxxxxxxx

xxxxxxxx

xxxxxxxx

Such a pattern is, of course, rather unlikely to occur in a GF file, but GFtoDVI would be able to use it if it

were present. Designers of gray fonts should provide characters only for patterns that they think will occur

often enough to make the doubling worthwhile. For example, the character in position 120 (XXXXXXXXXXXX),

or whatever is the tallest stack of x's present in the font, is a natural candidate for repeated doubling.

Here's how GFtoDVI decides what characters of the gray font will be used, given a configuration of black

and white pixels: If there are no black pixels, stop. Otherwise look at the top row that contains at least one

black pixel, and the eleven rows that follow. For each such column, find the largest k such that 1 5 k 5 120

and the gray font contains character k and the pattern assigned to position k appears in the given column.

Typeset character k (unless no such character exists) and erase the corresponding black pixels; use doubled

characters, if they are present in the gray font, if two or more consecutive equal characters need to be typeset.

Repeat the same process on the remaining configuratih, until all the black pixels have been erased.

If all characters in positions 1-120 are present, this process is guaranteed to take care of at least six

rows each time; and it usually takes care of twelve, since all patterns that contain at most one "run" of x's

are present.

Fonts have optional parameters, as described in Appendix F of The W b o o k , and some of these are

important in gray fonts. The slant parameter s, if nonzero, will cause GFtoDVI to skew its output; in this

case the character x will presumably be a parallelogram with a corresponding slant, rather than the usual

rectangle. METAFONT's coordinate (x, y) will appear in physical position (xw + yhs, yh) on the proofsheets.

Parameter number 8 of a gray font specifies the thickness of rules that go on the proofs. If this parameter

is zero, 'QjX's default rule thickness (0.4 pt) will be used.

The other parameters of a gray font are ignored by GFtoDVI, but it is conventional to set the space

parameter to w and the xheight parameter to h.

For best results the designer of a gray font should choose h and w so that the user's DVI-to-hardcopy

software will not make any rounding errors. Furthermore, the dot should be an even number 2m of pixels

in diameter, and the rule thickness should work out to an even number 2n of pixels; then the dots and

rules will be centered on the correct positions, in case of integer coordinates. Gray fonts are almost always

intended for particular output devices, even though 'DVI ' stands for 'device independent'; we use D V I files

for METAFONT proofs chiefly because software to print D V I files is already in place.

Editor's note: The following article by Georgia Tobin was set using W82.9999 on Apollo

microcomputers, and printed on an Imprint-10 laser printer a t 240 dots per inch. Ms. Tobin

hopes that i t is clear to TUGboat readers that this is a "font-in-progress". Her article
"Computer Calligraphy", which appeared in vol. 4, no. 1, described the design and construction

of a Copperplate script font.

